

pytest-workflow

Table of contents

	pytest-workflow

	Introduction

	Installation

	In a virtual environment

	On Ubuntu or Debian

	Conda

	Writing tests with pytest-workflow

	Getting started

	Test options

	Writing custom tests

	Running pytest-workflow

	Usage

	Specific pytest options for pytest workflow

	Named Arguments

	Temporary directory cleanup and creation

	Running multiple workflows simultaneously

	Running specific workflows

	Examples

	Snakemake example

	WDL with Cromwell example

	WDL with miniwdl example

	Known issues

	Reporting bugs and feature requests

	Contributing

	Changelog

	version 1.6.0

	version 1.5.0

	version 1.4.0

	version 1.3.0

	version 1.2.3

	version 1.2.2

	version 1.2.1

	version 1.2.0

	version 1.1.2

	version 1.1.1

	version 1.1.0

	Version 1.0.0

	Version 0.4.0

	Version 0.3.0

	Version 0.2.0

	Version 0.1.0

Introduction

Writing workflows is hard. Testing if they are correct is even harder. Testing with
bash scripts or other code has some flaws. Is this bug in the pipeline or in my test-framework?
Pytest-workflow aims to make testing as simple as possible so you can focus on debugging
your pipeline.

Installation

Pytest-workflow is tested on python 3.6, 3.7, 3.8, 3.9 and 3.10. Python 2 is not
supported.

In a virtual environment

	Create a new python3 virtual environment.

	Make sure your virtual environment is activated.

	Install using pip pip install pytest-workflow.

On Ubuntu or Debian

	This requires the python3 and python3-pip packages to be installed.

	Installing

	system-wide: sudo python3 -m pip install pytest-workflow.

	for your user only (no sudo needed):
python3 -m pip install --user pytest-workflow

	pytest can now be run with python3 -m pytest.

Note

Running plain pytest on Ubuntu or Debian outside of a virtual
environment will not work with pytest-workflow because this will start
the python2 version of pytest. This is because python2 is the default
python on any distribution released before January 1st 2020.

Conda

Pytest-workflow is also available as a conda package on conda-forge [https://anaconda.org/conda-forge/pytest-workflow].
To install with conda:

	Set up conda to use the conda-forge channel [http://conda-forge.org/docs/user/introduction.html#how-can-i-install-packages-from-conda-forge]

	If you want to use pytest-workflow together with bioconda you can follow
the instructions here [https://bioconda.github.io/index.html#set-up-channels].

	conda install pytest-workflow.

Writing tests with pytest-workflow

Getting started

In order to write tests that are discoverable by the plugin you need to
complete the following steps.

	Create a tests directory in the root of your repository.

	Create your test yaml files in the tests directory. The files need to
start with test and have a .yml or .yaml extension.

Below is an example of a YAML file that defines a test:

- name: Touch a file
 command: touch test.file
 files:
 - path: test.file

This will run touch test.file and check afterwards if a file with path:
test.file is present. It will also check if the command has exited
with exit code 0, which is the only default test that is run. Testing
workflows that exit with another exit code is also possible.

Test options

- name: moo file # The name of the workflow (required)
 command: bash moo_workflow.sh # The command to execute the workflow (required)
 files: # A list of files to check (optional)
 - path: "moo.txt" # File path. (Required for each file)
 contains: # A list of strings that should be in the file (optional)
 - "moo"
 must_not_contain: # A list of strings that should NOT be in the file (optional)
 - "Cock a doodle doo"
 md5sum: e583af1f8b00b53cda87ae9ead880224 # Md5sum of the file (optional)

- name: simple echo # A second workflow. Notice the starting `-` which means
 command: "echo moo" # that workflow items are in a list. You can add as much workflows as you want
 files:
 - path: "moo.txt"
 should_exist: false # Whether a file should be there or not. (optional, if not given defaults to true)
 stdout: # Options for testing stdout (optional)
 contains: # List of strings which should be in stdout (optional)
 - "moo"
 must_not_contain: # List of strings that should NOT be in stout (optional)
 - "Cock a doodle doo"

- name: mission impossible # Also failing workflows can be tested
 tags: # A list of tags that can be used to select which test
 - should fail # is run with pytest using the `--tag` flag.
 command: bash impossible.sh
 exit_code: 2 # What the exit code should be (optional, if not given defaults to 0)
 files:
 - path: "fail.log" # Multiple files can be tested for each workflow
 - path: "TomCruise.txt.gz" # Gzipped files can also be searched, provided their extension is '.gz'
 contains:
 - "starring"
 stderr: # Options for testing stderr (optional)
 contains: # A list of strings which should be in stderr (optional)
 - "BSOD error, please contact the IT crowd"
 must_not_contain: # A list of strings which should NOT be in stderr (optional)
 - "Mission accomplished!"

- name: regex tests
 command: echo Hello, world
 stdout:
 contains_regex: # A list of regex patterns that should be in stdout (optional)
 - 'Hello.*' # Note the single quotes, these are required for complex regexes
 - 'Hello .*' # This will fail, since there is a comma after Hello, not a space

 must_not_contain_regex: # A list of regex patterns that should not be in stdout (optional)
 - '^He.*' # This will fail, since the regex matches Hello, world
 - '^Hello .*' # Complex regexes will break yaml if double quotes are used

The above YAML file contains all the possible options for a workflow test.

Please see the Python documentation on regular expressions [https://docs.python.org/3.6/library/re.html] to see how Python handles escape
sequences.

Note

Workflow names must be unique. Pytest workflow will crash when multiple
workflows have the same name, even if they are in different files.

Writing custom tests

Pytest-workflow provides a way to run custom tests on files produced by a
workflow.

import pathlib
import pytest

@pytest.mark.workflow('files containing numbers')
def test_div_by_three(workflow_dir):
 number_file = pathlib.Path(workflow_dir, "123.txt")
 number_file_content = number_file.read_text()
 assert int(number_file_content) % 3 == 0

The @pytest.mark.workflow('files containing numbers') marks the test
as belonging to a workflow named files containing numbers. This test will
only run if the workflow ‘files containing numbers’ has run.

Multiple workflows can use the same custom test like this:

import pathlib
import pytest

@pytest.mark.workflow('my_workflow', 'another_workflow',
 'yet_another_workflow')
def test_ensure_long_logs_are_written(workflow_dir):
 log = pathlib.Path(workflow_dir, "log.out")
 assert len(log.readtext()) > 10000

workflow_dir is a fixture. It does not work without a
pytest.mark.workflow('workflow_name') mark. This is a
pathlib.Path [https://docs.python.org/3/library/pathlib.html] object that
points to the folder where the named workflow was executed. This allows writing
of advanced python tests for each file produced by the workflow.

Note

stdout and stderr are available as files in the root of the
workflow_dir as log.out and log.err respectively.

Running pytest-workflow

Usage

Run pytest from an environment with pytest-workflow installed or
python3 -m pytest if using a system-wide or user-wide installation.
Pytest will automatically gather files in the tests directory starting with
test and ending in .yaml or .yml.

The workflows are run automatically. Each workflow gets its own temporary
directory to run. The stdout and stderr of the workflow command are
also saved to this directory to log.out and log.err respectively.

To check the progress of a workflow while it is running you can use tail -f
on the stdout or stderr file of the workflow. The locations of these
files are reported in the log as soon as a workflow is started.

Specific pytest options for pytest workflow

usage: pytest [-h] [--kwd] [--kwdof] [--wt WORKFLOW_THREADS] [--symlink]
 [--ga] [--tag WORKFLOW_TAGS]

Named Arguments

	--kwd, --keep-workflow-wd

	Keep temporary directories where workflows are run for debugging purposes. This also triggers saving of stdout and stderr in the workflow directory.

Default: False

	--kwdof, --keep-workflow-wd-on-fail

	Similar to –keep-workflow-wd, but only keeps the temporary directories if there are test failures. On success all directories are deleted.

Default: False

	--wt, --workflow-threads

	The number of workflows to run simultaneously.

Default: 1

	--symlink

	Instead of copying the current working directory, create a similar directory structure where all files are replaced with symbolic links. This saves disk space, but should only be used for tests that do use these files read-only.

Default: False

	--ga, --git-aware

	Only copy files that are listed by the ‘git ls-files’ command. This ignores the .git directory, any untracked files and any files listed by .gitignore. Highly recommended when working in a git project.

Default: False

	--tag

	Run workflows with this name or tag.

Default: []

Temporary directory cleanup and creation

The temporary directories are cleaned up after the tests are completed.
If you wish to inspect the output of a failing
workflow you can use the --keep-workflow-wd or --kwd flag to disable
cleanup. This will also make sure the logs of the pipeline are not deleted.
If you only want to keep directories when one or more tests fail you can use
the --keep-workflow-wd-on-fail or --kwdof flag.
--keep-workflow-wd-on-fail will keep all temporary directories, even from
workflows that have succeeded.

If you wish to change the temporary directory in which the workflows are run
use --basetemp <dir> to change pytest’s base temp directory.

Warning

When a directory is passed to --basetemp some of the directory
contents will be deleted. For example: if your workflow is named
"my workflow" then any file or directory named my_workflow will be
deleted. This makes sure you start with a clean slate if you run pytest
again with the same basetemp directory.
DO NOT use --basetemp on directories where none of the
contents should be deleted.

The temporary directories created are copies of pytest’s root directory, the
directory from which it runs the tests. If you have lots of tests, and if you
have a large repository, this may take a lot of disk space. To alleviate this
you can use the --symlink flag which will create the same directory layout
but instead symlinks the files instead of copying them. This carries with it
the risk that the tests may alter files from your work directory. If there are
a lot of large files and files are used read-only in tests, then it will use a
lot less disk space and be faster as well.

Note

When your workflow is version controlled in git please use the
--git-aware option. This omits the .git folder, all untracked
files and everything ignored by .gitignore. This reduces the number of
copy operations significantly.

Running multiple workflows simultaneously

To run multiple workflows simultaneously you can use
--workflow-threads <int> or --wt <int> flag. This defines the number
of workflows that can be run simultaneously. This will speed up things if
you have enough resources to process these workflows simultaneously.

Running specific workflows

To run a specific workflow use the --tag flag. Each workflow is tagged with
its own name and additional tags in the tags key of the yaml.

- name: moo
 tags:
 - animal
 command: echo moo
- name: cock-a-doodle-doo
 tags:
 - rooster sound
 - animal
 command: echo cock-a-doodle-doo
- name: vroom vroom
 tags:
 - car
 command: echo vroom vroom

With the command pytest --tag moo only the workflow named ‘moo’ will be
run. With pytest --tag 'rooster sound' only the ‘cock-a-doodle-doo’
workflow will run. Multiple tags can be used like this:
pytest --tag 'rooster sound' --tag animal This will run all workflows that
have both ‘rooster sound’ and ‘animal’.

Internally names and tags are handled the same so if the following tests:

- name: hello
 command: echo 'hello'
- name: hello2
 command: echo 'hello2'
 tags:
 - hello

are run with pytest --tag hello then both hello and hello2 are run.

Examples

Snakemake example

An example yaml file that could be used to test a snakemake pipeline is listed
below.

- name: test-dry-run
 command: snakemake -n -r -p -s Snakefile
- name: test-full-run
 command: snakemake -r -p -s Snakefile
 files:
 - "my_output.txt"
 stderr:
 contains:
 - "(100%) done"

WDL with Cromwell example

Below an example yaml file is explained which can be used to test a WDL
pipeline run through Cromwell.

By default Cromwell outputs its files in the execution folder in a
deeply-nested folder structure. Cromwell can output to a separate
workflow-outputs folder and since Cromwell version 40 it can also output the
files in a structure that is not nested. For more information check the
Cromwell documentation on global workflow options [https://cromwell.readthedocs.io/en/stable/wf_options/Overview/#global-workflow-options].

In order to run Cromwell for CI tests an options file should be present in the
repository with the following contents:

{
"final_workflow_outputs_dir": "test-output",
"use_relative_output_paths": true,
"default_runtime_attributes": {
 "docker_user": "$EUID"
 }
}

final_workflow_outputs_dir will make sure all the files produced in the
workflow will be copied to the final_workflow_outputs_dir.
use_relative_output_paths will get rid of all the Cromwell specific folders
such as call-myTask etc. The default_runtime_attributes are only
necessary when using docker containers. It will make sure all the files are
created by the same user that runs the test (docker containers run as root by
default). This will ensure that files can be deleted by pytest-workflow
afterwards.

The following yaml file tests a WDL pipeline run with Cromwell. In this case
Cromwell is installed via conda. The conda installation adds a wrapper to
Cromwell so it can be used as a command, instead of having to use the jar.

- name: My pipeline
 command: cromwell run -i inputs.json -o options.json moo.wdl
 files:
 - path: test-output/moo.txt.gz
 md5sum: 173fd8023240a8016033b33f42db14a2
 stdout:
 contains:
 - "workflow finished with status 'Succeeded'"

WDL with miniwdl example

For miniwdl please consult the runner reference [https://miniwdl.readthedocs.io/en/stable/runner_reference.html] for more
information on the localization of output files as well as options to modify
the running of miniwdl from the environment.

Miniwdl will localize all the output files to an output_links directory
inside the test output directory. If you have a workflow with the output:

Inside the out directory the directories moo_file and
stats will be created. Inside these directories will be the produced files.

The following yaml file tests a WDL pipeline run with miniwdl.

- name: My pipeline
 command: miniwdl run -i inputs.json -d test-output/ moo.wdl
 files:
 - path: test-output/output_links/moo_file/moo.txt.gz
 md5sum: 173fd8023240a8016033b33f42db14a2
 - path: test-output/output_links/stats/number_of_moos_per_cow.tsv
 contains:
 - 42
 - path: test-output/output_links/stats/joy_invoking_moos.tsv
 must_not_contain:
 - 0

Please note that the trailing slash in -d test-output/ is important. It
will ensure the files end up in the test-output directory.

Known issues

	pytest-workflow does not work well together with pytest-cov. This is
due to the temporary directory creating nature of pytest-workflow.
This can be solved by using:

coverage run --source=<your_source_here> -m py.test <your_test_dir>

This will work as expected.

	contains_regex and must_not_contain_regex only work well with single
quotes in the yaml file. This is due to the way the yaml file is parsed: with
double quotes, special characters (like \t) will be expanded, which can
lead to crashes.

	Special care should be taken when using the backslash character (\) in
contains_regex and must_not_contain_regex, since this collides with
Python’s usage of the same character to escape special characters in strings.
Please see the Python documentation on regular expressions [https://docs.python.org/3.6/library/re.html] for details.

Reporting bugs and feature requests

Bugs can be reported and features can be requested on our
Github issue tracker [https://github.com/LUMC/pytest-workflow/issues/].

The aim of this project is to be as user-friendly as possible for writing
workflow tests, so all suggestions and bug reports are welcome!

Contributing

If you feel like this project is missing a certain something, feel free to make
a pull request. You can find our Github page here [https://github.com/lumc/pytest-workflow/].

Changelog

version 1.6.0

	Add a --git-aware or --ga option to only copy copy files listed by
git ls-files. This omits the .git folder, all untracked files and
everything ignored by .gitignore. This reduces the number of copy
operations drastically.

Pytest-workflow will now emit a warning when copying of a git directory is
detected without the --git-aware option.

	Add support and tests for Python 3.10

version 1.5.0

	Add support for python 3.9

	Update the print statement for starting jobs to be more structured. This will
make the output easier to to read and use, since different fields (stdout,
stderr, command, etc) are all on their own line.

	Do not crash when directories can not be removed due to permission errors.
Instead display a message to notify the users which directories could not be
removed. These issues occurred sometimes when tests involving docker were
run.

version 1.4.0

	Usage of the name keyword argument in workflow marks is now deprecated.
Using this will crash the plugin with a DeprecationWarning.

	Update minimum python requirement in the documentation.

	Removed redundant check in string checking code.

	Add new options contains_regex and must_not_contain_regex to check
for regexes in files and stdout/stderr.

version 1.3.0

Python 3.6 and pytest 5.4.0.0 are now minimum requirements for pytest-workflow.
This was necessary for fixing the deprecation warning issue and the issue with
the subdirectory evaluation. This also gave the opportunity to simplify the
source code using new python 3.6 syntax.

	Using the name keyword argument in workflow marks will be deprecated
from 1.4.0 onwards. A warning will be given if this is used. For example:
pytest.mark.workflow(name="my_workflow"). Use the name as argument
instead: pytest.mark.workflow("my_workflow").

	Allow running custom tests on multiple workflows. You can now use
pytest.mark.workflow("worflow name 1", "workflow name 2", ...).
(Issue #75 [https://github.com/LUMC/pytest-workflow/issues/75])

	Add a miniwdl example to the documentation.

	Added a --symlink flag to the CLI that changes the copying behavior.
Instead of copying, it creates a similar directory structure where all files
are linked to with symbolic links. (Issue #96 [https://github.com/LUMC/pytest-workflow/issues/98])

	Refactored the code base. Python 3.6’s f-strings and type annotation were
used consistently throughout the project. Some code was rewritten to be more
concise and readable.

	Improved speed for searching string content in files. This was achieved by
removing intermediate functions and simplifying the search function.

	Improved speed for calculating md5sums by increasing the read buffer size
from 8k to 64k.

	Solve issue where pytest would display a lot of deprecation warnings when
running pytest-workflow. (Issue #98 [https://github.com/LUMC/pytest-workflow/issues/98])

	Fix issues with later versions of Cromwell and Snakemake in CI testing.

	Add correct subdirectory evaluation to fix issue where /parent-dir/child
was evaluated as a subdirectory of /parent due to starting with the same
string. (Issue #95 [https://github.com/LUMC/pytest-workflow/issues/95])

	Fix error in cromwell example which did not allow it to remove folders
correctly.

version 1.2.3

	Added missing help section for --tag on the CLI.

	Documentation: added usage chapter for pytest-workflow specific options.

	Documentation: updated Cromwell example.

	Removed redundant references to pylint in code comments and CI.

	Remove Codacy from the CI.

version 1.2.2

	Test against python3.8

	Do not test on python3.5 snakemake as it crashes. Added test for python3.7
snakemake.

	Fix a typo in the documentation.

	Add tags ‘wdl’, ‘cromwell’ and ‘snakemake’ to the package to increase
discoverability.

	Remove pylint from the lint procedure as it was very strict and got stricter
with every update, causing tests that previously succeeded to fail on a
regular basis.

	Make sure pytest-workflow crashes when multiple workflows have the same name,
even when they are in different files.

	Added setup.cfg to include license in source distributions on PyPI for
future versions

version 1.2.1

	Since pytest 4.5.0 unknown markers give a warning. @pytest.mark.workflow
markers are now added to the configuration. Information on usage shows up
with pytest --mark.

	Updated documentation to reflect the move to conda-forge as requested on
this github issue [https://github.com/bioconda/bioconda-recipes/issues/13964].

	Updated documentation on how to test Cromwell + WDL pipelines.

version 1.2.0

	Giving a --basetemp directory that is within pytest’s current working
directory will now raise an exception to prevent infinite recursive directory
copying.

	The cleanup message is only displayed when pytest-workflow is used.

	Added a --keep-workflow-wd-on-fail or --kwdof flag. Setting this flag
will make sure temporary directories are only deleted when all tests succeed.

version 1.1.2

	Fixed a bug where the program would hang indefinitely after a user input
error.

version 1.1.1

	Added --kwd as alias for --keep-workflow-wd. Notify the user of
deletion of temporary directories and logs.

	Released pytest-workflow as a conda package on bioconda [https://bioconda.github.io/recipes/pytest-workflow/README.html].

version 1.1.0

	Enabled custom tests on workflow files.

Version 1.0.0

Lots of small fixes that improve the usability of pytest-workflow are included
in version 1.0.0.

	Gzipped files can now also be checked for contents. Files with ‘.gz’ as
extension are automatically decompressed.

	stdout and stderr of workflows are now streamed to a file instead of
being kept in memory. This means you can check the progress of a workflow by
running tail -f <stdout or stderr>. The location of stdout and
stderr is now reported at the start of each worflow. If the
--keep-workflow-wd is not set the stdout and stderr files will be
deleted with the rest of the workflow files.

	The log reports now when a workflow is starting, instead of when it is added
to the queue. This makes it easier to see which workflows are currently
running and if you forgot to use the --workflow-threads or --wt flag.

	Workflow exit code failures now mention the name of the workflow. Previously
the generic name “Workflow” was used, which made it harder to figure out
which workflows failed.

	When tests of file content fail because the file does not exist, a different
error message is given compared to when the file exist, but the content is
not there, which makes debugging easier. Also the accompanying
“FileNotFound” error stacktrace is now suppressed, which keeps the test
output more pleasant.

	When tests of stdout/stderr content or file content fail a more informative
error message is given to allow for easier debugging.

	All workflows now get their own folder within the same temporary directory.
This fixes a bug where if basetemp was not set, each workflow would get
its own folder in a separate temp directory. For example running workflows
‘workflow1’ and ‘workflow2’ would create two temporary folders:

‘/tmp/pytest_workflow_33mrz5a5/workflow1’ and
‘/tmp/pytest_workflow_b8m1wzuf/workflow2’

This is now changed to have all workflows in one temporary directory per
pytest run:

‘/tmp/pytest_workflow_33mrz5a5/workflow1’ and
‘/tmp/pytest_workflow_33mrz5a5/workflow2’

	Disallow empty command and name keys. An empty command caused
pytest-workflow to hang. Empty names are also disallowed.

Version 0.4.0

	Added more information to the manual on how to debug pipelines and use
pytest-workflow outside a virtual environment.

	Reworked code to use tempfile.mkdtemp to create a truly unique
temporary working directory if the --basetemp flag is not used. This
replaces the old code which dependeded on pytest internal code which was
flagged as deprecated. Also more information was added to the manual about
the use of --basetemp.

	Added a test case for WDL pipelines run with Cromwell and wrote an example
for using WDL+Cromwell in the manual.

	Added --tag flag to allow for easier selection of workflows during
testing.

	Added a test case for snakemake pipelines and wrote an example for using
pytest-workflow with snakemake in the manual.

Version 0.3.0

	Improved the log output to look nicer and make workflow log paths easier to
find in the test output.

	Fixed an error that polluted the log message with a pytest stacktrace when
running more than one workflow. Measures are taken in our test framework to
detect such issues in the future.

	Added the possibility to run multiple workflows simultaneously with the
--workflow-threads or --wt flag.

	Made code easier to maintain by using stdlib instead of pytest’s py lib
in all of the code.

	Added a schema check to ensure that tests have unique names when whitespace
is removed.

Version 0.2.0

	Cleanup the readme and move advanced usage documentation to our readthedocs
page.

	Start using sphinx and readthedocs.org for creating project documentation.

	The temporary directories in which workflows are run are automatically
cleaned up at the end of each workflow test. You can disable this behaviour
by using the --keep-workflow-wd flag, which allows you to inspect the
working directory after the workflow tests have run. This is useful for
debugging workflows.

	The temporary directories in which workflows are run can now be
changed by using the --basetemp flag. This is because pytest-workflow now
uses the built-in tmpdir capabilities of pytest.

	Save stdout and stderr of each workflow to a file and report their locations
to stdout when running pytest.

	Comprehensible failure messages were added to make debugging workflows
easier.

Version 0.1.0

	A full set of examples is now provided in the README.

	Our code base is now checked by pylint and bandit as part of our test
procedure to ensure that our code adheres to python and security best
practices.

	Add functionality to test whether certain strings exist in files, stdout and
stderr.

	Enable easy to understand output when using pytest verbose mode
(pytest -v).
The required code refactoring has simplified the code base and made it easier
to maintain.

	Enable the checking of non-existing files

	Enable the checking of file md5sums

	Use a schema structure that is easy to use and understand.

	Pytest-workflow now has continuous integration and coverage reporting,
so we can detect regressions quickly and only publish well-tested versions.

	Fully parametrized tests enabled by changing code structure.

	Initialized pytest-workflow with option to test if files exist.

Index

Reporting bugs and feature requests

Bugs can be reported and features can be requested on our
Github issue tracker [https://github.com/LUMC/pytest-workflow/issues/].

The aim of this project is to be as user-friendly as possible for writing
workflow tests, so all suggestions and bug reports are welcome!

Contributing

If you feel like this project is missing a certain something, feel free to make
a pull request. You can find our Github page here [https://github.com/lumc/pytest-workflow/].

Changelog

version 1.6.0

	Add a --git-aware or --ga option to only copy copy files listed by
git ls-files. This omits the .git folder, all untracked files and
everything ignored by .gitignore. This reduces the number of copy
operations drastically.

Pytest-workflow will now emit a warning when copying of a git directory is
detected without the --git-aware option.

	Add support and tests for Python 3.10

version 1.5.0

	Add support for python 3.9

	Update the print statement for starting jobs to be more structured. This will
make the output easier to to read and use, since different fields (stdout,
stderr, command, etc) are all on their own line.

	Do not crash when directories can not be removed due to permission errors.
Instead display a message to notify the users which directories could not be
removed. These issues occurred sometimes when tests involving docker were
run.

version 1.4.0

	Usage of the name keyword argument in workflow marks is now deprecated.
Using this will crash the plugin with a DeprecationWarning.

	Update minimum python requirement in the documentation.

	Removed redundant check in string checking code.

	Add new options contains_regex and must_not_contain_regex to check
for regexes in files and stdout/stderr.

version 1.3.0

Python 3.6 and pytest 5.4.0.0 are now minimum requirements for pytest-workflow.
This was necessary for fixing the deprecation warning issue and the issue with
the subdirectory evaluation. This also gave the opportunity to simplify the
source code using new python 3.6 syntax.

	Using the name keyword argument in workflow marks will be deprecated
from 1.4.0 onwards. A warning will be given if this is used. For example:
pytest.mark.workflow(name="my_workflow"). Use the name as argument
instead: pytest.mark.workflow("my_workflow").

	Allow running custom tests on multiple workflows. You can now use
pytest.mark.workflow("worflow name 1", "workflow name 2", ...).
(Issue #75 [https://github.com/LUMC/pytest-workflow/issues/75])

	Add a miniwdl example to the documentation.

	Added a --symlink flag to the CLI that changes the copying behavior.
Instead of copying, it creates a similar directory structure where all files
are linked to with symbolic links. (Issue #96 [https://github.com/LUMC/pytest-workflow/issues/98])

	Refactored the code base. Python 3.6’s f-strings and type annotation were
used consistently throughout the project. Some code was rewritten to be more
concise and readable.

	Improved speed for searching string content in files. This was achieved by
removing intermediate functions and simplifying the search function.

	Improved speed for calculating md5sums by increasing the read buffer size
from 8k to 64k.

	Solve issue where pytest would display a lot of deprecation warnings when
running pytest-workflow. (Issue #98 [https://github.com/LUMC/pytest-workflow/issues/98])

	Fix issues with later versions of Cromwell and Snakemake in CI testing.

	Add correct subdirectory evaluation to fix issue where /parent-dir/child
was evaluated as a subdirectory of /parent due to starting with the same
string. (Issue #95 [https://github.com/LUMC/pytest-workflow/issues/95])

	Fix error in cromwell example which did not allow it to remove folders
correctly.

version 1.2.3

	Added missing help section for --tag on the CLI.

	Documentation: added usage chapter for pytest-workflow specific options.

	Documentation: updated Cromwell example.

	Removed redundant references to pylint in code comments and CI.

	Remove Codacy from the CI.

version 1.2.2

	Test against python3.8

	Do not test on python3.5 snakemake as it crashes. Added test for python3.7
snakemake.

	Fix a typo in the documentation.

	Add tags ‘wdl’, ‘cromwell’ and ‘snakemake’ to the package to increase
discoverability.

	Remove pylint from the lint procedure as it was very strict and got stricter
with every update, causing tests that previously succeeded to fail on a
regular basis.

	Make sure pytest-workflow crashes when multiple workflows have the same name,
even when they are in different files.

	Added setup.cfg to include license in source distributions on PyPI for
future versions

version 1.2.1

	Since pytest 4.5.0 unknown markers give a warning. @pytest.mark.workflow
markers are now added to the configuration. Information on usage shows up
with pytest --mark.

	Updated documentation to reflect the move to conda-forge as requested on
this github issue [https://github.com/bioconda/bioconda-recipes/issues/13964].

	Updated documentation on how to test Cromwell + WDL pipelines.

version 1.2.0

	Giving a --basetemp directory that is within pytest’s current working
directory will now raise an exception to prevent infinite recursive directory
copying.

	The cleanup message is only displayed when pytest-workflow is used.

	Added a --keep-workflow-wd-on-fail or --kwdof flag. Setting this flag
will make sure temporary directories are only deleted when all tests succeed.

version 1.1.2

	Fixed a bug where the program would hang indefinitely after a user input
error.

version 1.1.1

	Added --kwd as alias for --keep-workflow-wd. Notify the user of
deletion of temporary directories and logs.

	Released pytest-workflow as a conda package on bioconda [https://bioconda.github.io/recipes/pytest-workflow/README.html].

version 1.1.0

	Enabled custom tests on workflow files.

Version 1.0.0

Lots of small fixes that improve the usability of pytest-workflow are included
in version 1.0.0.

	Gzipped files can now also be checked for contents. Files with ‘.gz’ as
extension are automatically decompressed.

	stdout and stderr of workflows are now streamed to a file instead of
being kept in memory. This means you can check the progress of a workflow by
running tail -f <stdout or stderr>. The location of stdout and
stderr is now reported at the start of each worflow. If the
--keep-workflow-wd is not set the stdout and stderr files will be
deleted with the rest of the workflow files.

	The log reports now when a workflow is starting, instead of when it is added
to the queue. This makes it easier to see which workflows are currently
running and if you forgot to use the --workflow-threads or --wt flag.

	Workflow exit code failures now mention the name of the workflow. Previously
the generic name “Workflow” was used, which made it harder to figure out
which workflows failed.

	When tests of file content fail because the file does not exist, a different
error message is given compared to when the file exist, but the content is
not there, which makes debugging easier. Also the accompanying
“FileNotFound” error stacktrace is now suppressed, which keeps the test
output more pleasant.

	When tests of stdout/stderr content or file content fail a more informative
error message is given to allow for easier debugging.

	All workflows now get their own folder within the same temporary directory.
This fixes a bug where if basetemp was not set, each workflow would get
its own folder in a separate temp directory. For example running workflows
‘workflow1’ and ‘workflow2’ would create two temporary folders:

‘/tmp/pytest_workflow_33mrz5a5/workflow1’ and
‘/tmp/pytest_workflow_b8m1wzuf/workflow2’

This is now changed to have all workflows in one temporary directory per
pytest run:

‘/tmp/pytest_workflow_33mrz5a5/workflow1’ and
‘/tmp/pytest_workflow_33mrz5a5/workflow2’

	Disallow empty command and name keys. An empty command caused
pytest-workflow to hang. Empty names are also disallowed.

Version 0.4.0

	Added more information to the manual on how to debug pipelines and use
pytest-workflow outside a virtual environment.

	Reworked code to use tempfile.mkdtemp to create a truly unique
temporary working directory if the --basetemp flag is not used. This
replaces the old code which dependeded on pytest internal code which was
flagged as deprecated. Also more information was added to the manual about
the use of --basetemp.

	Added a test case for WDL pipelines run with Cromwell and wrote an example
for using WDL+Cromwell in the manual.

	Added --tag flag to allow for easier selection of workflows during
testing.

	Added a test case for snakemake pipelines and wrote an example for using
pytest-workflow with snakemake in the manual.

Version 0.3.0

	Improved the log output to look nicer and make workflow log paths easier to
find in the test output.

	Fixed an error that polluted the log message with a pytest stacktrace when
running more than one workflow. Measures are taken in our test framework to
detect such issues in the future.

	Added the possibility to run multiple workflows simultaneously with the
--workflow-threads or --wt flag.

	Made code easier to maintain by using stdlib instead of pytest’s py lib
in all of the code.

	Added a schema check to ensure that tests have unique names when whitespace
is removed.

Version 0.2.0

	Cleanup the readme and move advanced usage documentation to our readthedocs
page.

	Start using sphinx and readthedocs.org for creating project documentation.

	The temporary directories in which workflows are run are automatically
cleaned up at the end of each workflow test. You can disable this behaviour
by using the --keep-workflow-wd flag, which allows you to inspect the
working directory after the workflow tests have run. This is useful for
debugging workflows.

	The temporary directories in which workflows are run can now be
changed by using the --basetemp flag. This is because pytest-workflow now
uses the built-in tmpdir capabilities of pytest.

	Save stdout and stderr of each workflow to a file and report their locations
to stdout when running pytest.

	Comprehensible failure messages were added to make debugging workflows
easier.

Version 0.1.0

	A full set of examples is now provided in the README.

	Our code base is now checked by pylint and bandit as part of our test
procedure to ensure that our code adheres to python and security best
practices.

	Add functionality to test whether certain strings exist in files, stdout and
stderr.

	Enable easy to understand output when using pytest verbose mode
(pytest -v).
The required code refactoring has simplified the code base and made it easier
to maintain.

	Enable the checking of non-existing files

	Enable the checking of file md5sums

	Use a schema structure that is easy to use and understand.

	Pytest-workflow now has continuous integration and coverage reporting,
so we can detect regressions quickly and only publish well-tested versions.

	Fully parametrized tests enabled by changing code structure.

	Initialized pytest-workflow with option to test if files exist.

Examples

Snakemake example

An example yaml file that could be used to test a snakemake pipeline is listed
below.

- name: test-dry-run
 command: snakemake -n -r -p -s Snakefile
- name: test-full-run
 command: snakemake -r -p -s Snakefile
 files:
 - "my_output.txt"
 stderr:
 contains:
 - "(100%) done"

WDL with Cromwell example

Below an example yaml file is explained which can be used to test a WDL
pipeline run through Cromwell.

By default Cromwell outputs its files in the execution folder in a
deeply-nested folder structure. Cromwell can output to a separate
workflow-outputs folder and since Cromwell version 40 it can also output the
files in a structure that is not nested. For more information check the
Cromwell documentation on global workflow options [https://cromwell.readthedocs.io/en/stable/wf_options/Overview/#global-workflow-options].

In order to run Cromwell for CI tests an options file should be present in the
repository with the following contents:

{
"final_workflow_outputs_dir": "test-output",
"use_relative_output_paths": true,
"default_runtime_attributes": {
 "docker_user": "$EUID"
 }
}

final_workflow_outputs_dir will make sure all the files produced in the
workflow will be copied to the final_workflow_outputs_dir.
use_relative_output_paths will get rid of all the Cromwell specific folders
such as call-myTask etc. The default_runtime_attributes are only
necessary when using docker containers. It will make sure all the files are
created by the same user that runs the test (docker containers run as root by
default). This will ensure that files can be deleted by pytest-workflow
afterwards.

The following yaml file tests a WDL pipeline run with Cromwell. In this case
Cromwell is installed via conda. The conda installation adds a wrapper to
Cromwell so it can be used as a command, instead of having to use the jar.

- name: My pipeline
 command: cromwell run -i inputs.json -o options.json moo.wdl
 files:
 - path: test-output/moo.txt.gz
 md5sum: 173fd8023240a8016033b33f42db14a2
 stdout:
 contains:
 - "workflow finished with status 'Succeeded'"

WDL with miniwdl example

For miniwdl please consult the runner reference [https://miniwdl.readthedocs.io/en/stable/runner_reference.html] for more
information on the localization of output files as well as options to modify
the running of miniwdl from the environment.

Miniwdl will localize all the output files to an output_links directory
inside the test output directory. If you have a workflow with the output:

Inside the out directory the directories moo_file and
stats will be created. Inside these directories will be the produced files.

The following yaml file tests a WDL pipeline run with miniwdl.

- name: My pipeline
 command: miniwdl run -i inputs.json -d test-output/ moo.wdl
 files:
 - path: test-output/output_links/moo_file/moo.txt.gz
 md5sum: 173fd8023240a8016033b33f42db14a2
 - path: test-output/output_links/stats/number_of_moos_per_cow.tsv
 contains:
 - 42
 - path: test-output/output_links/stats/joy_invoking_moos.tsv
 must_not_contain:
 - 0

Please note that the trailing slash in -d test-output/ is important. It
will ensure the files end up in the test-output directory.

Installation

Pytest-workflow is tested on python 3.6, 3.7, 3.8, 3.9 and 3.10. Python 2 is not
supported.

In a virtual environment

	Create a new python3 virtual environment.

	Make sure your virtual environment is activated.

	Install using pip pip install pytest-workflow.

On Ubuntu or Debian

	This requires the python3 and python3-pip packages to be installed.

	Installing

	system-wide: sudo python3 -m pip install pytest-workflow.

	for your user only (no sudo needed):
python3 -m pip install --user pytest-workflow

	pytest can now be run with python3 -m pytest.

Note

Running plain pytest on Ubuntu or Debian outside of a virtual
environment will not work with pytest-workflow because this will start
the python2 version of pytest. This is because python2 is the default
python on any distribution released before January 1st 2020.

Conda

Pytest-workflow is also available as a conda package on conda-forge [https://anaconda.org/conda-forge/pytest-workflow].
To install with conda:

	Set up conda to use the conda-forge channel [http://conda-forge.org/docs/user/introduction.html#how-can-i-install-packages-from-conda-forge]

	If you want to use pytest-workflow together with bioconda you can follow
the instructions here [https://bioconda.github.io/index.html#set-up-channels].

	conda install pytest-workflow.

Introduction

Writing workflows is hard. Testing if they are correct is even harder. Testing with
bash scripts or other code has some flaws. Is this bug in the pipeline or in my test-framework?
Pytest-workflow aims to make testing as simple as possible so you can focus on debugging
your pipeline.

Known issues

	pytest-workflow does not work well together with pytest-cov. This is
due to the temporary directory creating nature of pytest-workflow.
This can be solved by using:

coverage run --source=<your_source_here> -m py.test <your_test_dir>

This will work as expected.

	contains_regex and must_not_contain_regex only work well with single
quotes in the yaml file. This is due to the way the yaml file is parsed: with
double quotes, special characters (like \t) will be expanded, which can
lead to crashes.

	Special care should be taken when using the backslash character (\) in
contains_regex and must_not_contain_regex, since this collides with
Python’s usage of the same character to escape special characters in strings.
Please see the Python documentation on regular expressions [https://docs.python.org/3.6/library/re.html] for details.

Running pytest-workflow

Usage

Run pytest from an environment with pytest-workflow installed or
python3 -m pytest if using a system-wide or user-wide installation.
Pytest will automatically gather files in the tests directory starting with
test and ending in .yaml or .yml.

The workflows are run automatically. Each workflow gets its own temporary
directory to run. The stdout and stderr of the workflow command are
also saved to this directory to log.out and log.err respectively.

To check the progress of a workflow while it is running you can use tail -f
on the stdout or stderr file of the workflow. The locations of these
files are reported in the log as soon as a workflow is started.

Specific pytest options for pytest workflow

usage: pytest [-h] [--kwd] [--kwdof] [--wt WORKFLOW_THREADS] [--symlink]
 [--ga] [--tag WORKFLOW_TAGS]

Named Arguments

	--kwd, --keep-workflow-wd

	Keep temporary directories where workflows are run for debugging purposes. This also triggers saving of stdout and stderr in the workflow directory.

Default: False

	--kwdof, --keep-workflow-wd-on-fail

	Similar to –keep-workflow-wd, but only keeps the temporary directories if there are test failures. On success all directories are deleted.

Default: False

	--wt, --workflow-threads

	The number of workflows to run simultaneously.

Default: 1

	--symlink

	Instead of copying the current working directory, create a similar directory structure where all files are replaced with symbolic links. This saves disk space, but should only be used for tests that do use these files read-only.

Default: False

	--ga, --git-aware

	Only copy files that are listed by the ‘git ls-files’ command. This ignores the .git directory, any untracked files and any files listed by .gitignore. Highly recommended when working in a git project.

Default: False

	--tag

	Run workflows with this name or tag.

Default: []

Temporary directory cleanup and creation

The temporary directories are cleaned up after the tests are completed.
If you wish to inspect the output of a failing
workflow you can use the --keep-workflow-wd or --kwd flag to disable
cleanup. This will also make sure the logs of the pipeline are not deleted.
If you only want to keep directories when one or more tests fail you can use
the --keep-workflow-wd-on-fail or --kwdof flag.
--keep-workflow-wd-on-fail will keep all temporary directories, even from
workflows that have succeeded.

If you wish to change the temporary directory in which the workflows are run
use --basetemp <dir> to change pytest’s base temp directory.

Warning

When a directory is passed to --basetemp some of the directory
contents will be deleted. For example: if your workflow is named
"my workflow" then any file or directory named my_workflow will be
deleted. This makes sure you start with a clean slate if you run pytest
again with the same basetemp directory.
DO NOT use --basetemp on directories where none of the
contents should be deleted.

The temporary directories created are copies of pytest’s root directory, the
directory from which it runs the tests. If you have lots of tests, and if you
have a large repository, this may take a lot of disk space. To alleviate this
you can use the --symlink flag which will create the same directory layout
but instead symlinks the files instead of copying them. This carries with it
the risk that the tests may alter files from your work directory. If there are
a lot of large files and files are used read-only in tests, then it will use a
lot less disk space and be faster as well.

Note

When your workflow is version controlled in git please use the
--git-aware option. This omits the .git folder, all untracked
files and everything ignored by .gitignore. This reduces the number of
copy operations significantly.

Running multiple workflows simultaneously

To run multiple workflows simultaneously you can use
--workflow-threads <int> or --wt <int> flag. This defines the number
of workflows that can be run simultaneously. This will speed up things if
you have enough resources to process these workflows simultaneously.

Running specific workflows

To run a specific workflow use the --tag flag. Each workflow is tagged with
its own name and additional tags in the tags key of the yaml.

- name: moo
 tags:
 - animal
 command: echo moo
- name: cock-a-doodle-doo
 tags:
 - rooster sound
 - animal
 command: echo cock-a-doodle-doo
- name: vroom vroom
 tags:
 - car
 command: echo vroom vroom

With the command pytest --tag moo only the workflow named ‘moo’ will be
run. With pytest --tag 'rooster sound' only the ‘cock-a-doodle-doo’
workflow will run. Multiple tags can be used like this:
pytest --tag 'rooster sound' --tag animal This will run all workflows that
have both ‘rooster sound’ and ‘animal’.

Internally names and tags are handled the same so if the following tests:

- name: hello
 command: echo 'hello'
- name: hello2
 command: echo 'hello2'
 tags:
 - hello

are run with pytest --tag hello then both hello and hello2 are run.

Writing tests with pytest-workflow

Getting started

In order to write tests that are discoverable by the plugin you need to
complete the following steps.

	Create a tests directory in the root of your repository.

	Create your test yaml files in the tests directory. The files need to
start with test and have a .yml or .yaml extension.

Below is an example of a YAML file that defines a test:

- name: Touch a file
 command: touch test.file
 files:
 - path: test.file

This will run touch test.file and check afterwards if a file with path:
test.file is present. It will also check if the command has exited
with exit code 0, which is the only default test that is run. Testing
workflows that exit with another exit code is also possible.

Test options

- name: moo file # The name of the workflow (required)
 command: bash moo_workflow.sh # The command to execute the workflow (required)
 files: # A list of files to check (optional)
 - path: "moo.txt" # File path. (Required for each file)
 contains: # A list of strings that should be in the file (optional)
 - "moo"
 must_not_contain: # A list of strings that should NOT be in the file (optional)
 - "Cock a doodle doo"
 md5sum: e583af1f8b00b53cda87ae9ead880224 # Md5sum of the file (optional)

- name: simple echo # A second workflow. Notice the starting `-` which means
 command: "echo moo" # that workflow items are in a list. You can add as much workflows as you want
 files:
 - path: "moo.txt"
 should_exist: false # Whether a file should be there or not. (optional, if not given defaults to true)
 stdout: # Options for testing stdout (optional)
 contains: # List of strings which should be in stdout (optional)
 - "moo"
 must_not_contain: # List of strings that should NOT be in stout (optional)
 - "Cock a doodle doo"

- name: mission impossible # Also failing workflows can be tested
 tags: # A list of tags that can be used to select which test
 - should fail # is run with pytest using the `--tag` flag.
 command: bash impossible.sh
 exit_code: 2 # What the exit code should be (optional, if not given defaults to 0)
 files:
 - path: "fail.log" # Multiple files can be tested for each workflow
 - path: "TomCruise.txt.gz" # Gzipped files can also be searched, provided their extension is '.gz'
 contains:
 - "starring"
 stderr: # Options for testing stderr (optional)
 contains: # A list of strings which should be in stderr (optional)
 - "BSOD error, please contact the IT crowd"
 must_not_contain: # A list of strings which should NOT be in stderr (optional)
 - "Mission accomplished!"

- name: regex tests
 command: echo Hello, world
 stdout:
 contains_regex: # A list of regex patterns that should be in stdout (optional)
 - 'Hello.*' # Note the single quotes, these are required for complex regexes
 - 'Hello .*' # This will fail, since there is a comma after Hello, not a space

 must_not_contain_regex: # A list of regex patterns that should not be in stdout (optional)
 - '^He.*' # This will fail, since the regex matches Hello, world
 - '^Hello .*' # Complex regexes will break yaml if double quotes are used

The above YAML file contains all the possible options for a workflow test.

Please see the Python documentation on regular expressions [https://docs.python.org/3.6/library/re.html] to see how Python handles escape
sequences.

Note

Workflow names must be unique. Pytest workflow will crash when multiple
workflows have the same name, even if they are in different files.

Writing custom tests

Pytest-workflow provides a way to run custom tests on files produced by a
workflow.

import pathlib
import pytest

@pytest.mark.workflow('files containing numbers')
def test_div_by_three(workflow_dir):
 number_file = pathlib.Path(workflow_dir, "123.txt")
 number_file_content = number_file.read_text()
 assert int(number_file_content) % 3 == 0

The @pytest.mark.workflow('files containing numbers') marks the test
as belonging to a workflow named files containing numbers. This test will
only run if the workflow ‘files containing numbers’ has run.

Multiple workflows can use the same custom test like this:

import pathlib
import pytest

@pytest.mark.workflow('my_workflow', 'another_workflow',
 'yet_another_workflow')
def test_ensure_long_logs_are_written(workflow_dir):
 log = pathlib.Path(workflow_dir, "log.out")
 assert len(log.readtext()) > 10000

workflow_dir is a fixture. It does not work without a
pytest.mark.workflow('workflow_name') mark. This is a
pathlib.Path [https://docs.python.org/3/library/pathlib.html] object that
points to the folder where the named workflow was executed. This allows writing
of advanced python tests for each file produced by the workflow.

Note

stdout and stderr are available as files in the root of the
workflow_dir as log.out and log.err respectively.

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 pytest-workflow

_static/up.png

_static/up-pressed.png

