
pytest-workflow Documentation
Release 2.0.1

Leiden University Medical Center

Jan 13, 2023

Contents

1 Introduction 3

2 Installation 5
2.1 In a virtual environment . 5
2.2 On Ubuntu or Debian . 5
2.3 Conda . 5

3 Writing tests with pytest-workflow 7
3.1 Getting started . 7
3.2 Test options . 7
3.3 Environment variables . 9
3.4 Writing custom tests . 9

4 Running pytest-workflow 11
4.1 Usage . 11
4.2 Specific pytest options for pytest workflow . 11
4.3 Setting specific per-project settings using pytest.ini . 12
4.4 Temporary directory cleanup and creation . 12
4.5 Running multiple workflows simultaneously . 13
4.6 Running specific workflows . 13

5 Examples 15
5.1 Snakemake example . 15
5.2 WDL with Cromwell example . 15
5.3 WDL with miniwdl example . 16
5.4 Nextflow example . 17
5.5 Bash example . 17

6 Known issues 19

7 Reporting bugs and feature requests 21

8 Contributing 23

9 Changelog 25
9.1 version 2.0.1 . 25
9.2 version 2.0.0 . 25
9.3 version 1.6.0 . 26

i

9.4 version 1.5.0 . 26
9.5 version 1.4.0 . 26
9.6 version 1.3.0 . 26
9.7 version 1.2.3 . 27
9.8 version 1.2.2 . 27
9.9 version 1.2.1 . 28
9.10 version 1.2.0 . 28
9.11 version 1.1.2 . 28
9.12 version 1.1.1 . 28
9.13 version 1.1.0 . 28
9.14 Version 1.0.0 . 28
9.15 Version 0.4.0 . 29
9.16 Version 0.3.0 . 29
9.17 Version 0.2.0 . 30
9.18 Version 0.1.0 . 30

ii

pytest-workflow Documentation, Release 2.0.1

Table of contents

• pytest-workflow

• Introduction

• Installation

– In a virtual environment

– On Ubuntu or Debian

– Conda

• Writing tests with pytest-workflow

– Getting started

– Test options

– Environment variables

– Writing custom tests

• Running pytest-workflow

– Usage

– Specific pytest options for pytest workflow

* Named Arguments

– Setting specific per-project settings using pytest.ini

– Temporary directory cleanup and creation

– Running multiple workflows simultaneously

– Running specific workflows

• Examples

– Snakemake example

– WDL with Cromwell example

– WDL with miniwdl example

– Nextflow example

– Bash example

• Known issues

• Reporting bugs and feature requests

• Contributing

• Changelog

– version 2.0.1

– version 2.0.0

– version 1.6.0

– version 1.5.0

– version 1.4.0

Contents 1

pytest-workflow Documentation, Release 2.0.1

– version 1.3.0

– version 1.2.3

– version 1.2.2

– version 1.2.1

– version 1.2.0

– version 1.1.2

– version 1.1.1

– version 1.1.0

– Version 1.0.0

– Version 0.4.0

– Version 0.3.0

– Version 0.2.0

– Version 0.1.0

2 Contents

CHAPTER 1

Introduction

Writing workflows is hard. Testing if they are correct is even harder. Testing with bash scripts or other code has some
flaws. Is this bug in the pipeline or in my test-framework? Pytest-workflow aims to make testing as simple as possible
so you can focus on debugging your pipeline.

3

pytest-workflow Documentation, Release 2.0.1

4 Chapter 1. Introduction

CHAPTER 2

Installation

Pytest-workflow is tested on python 3.7, 3.8, 3.9, 3.10 and 3.11.

2.1 In a virtual environment

• Create a new python3 virtual environment.

• Make sure your virtual environment is activated.

• Install using pip pip install pytest-workflow.

2.2 On Ubuntu or Debian

• This requires the python3 and python3-pip packages to be installed.

• Installing

– system-wide: sudo python3 -m pip install pytest-workflow.

– for your user only (no sudo needed): python3 -m pip install --user pytest-workflow

• pytest can now be run with python3 -m pytest.

Note: Running plain pytest on Ubuntu or Debian outside of a virtual environment will not work with
pytest-workflow because this will start the python2 version of pytest. This is because python2 is the de-
fault python on any distribution released before January 1st 2020.

2.3 Conda

Pytest-workflow is also available as a conda package on conda-forge. To install with conda:

5

https://anaconda.org/conda-forge/pytest-workflow

pytest-workflow Documentation, Release 2.0.1

• Set up conda to use the conda-forge channel

– If you want to use pytest-workflow together with bioconda you can follow the instructions here.

• conda install pytest-workflow.

6 Chapter 2. Installation

http://conda-forge.org/docs/user/introduction.html#how-can-i-install-packages-from-conda-forge
https://bioconda.github.io/index.html#set-up-channels

CHAPTER 3

Writing tests with pytest-workflow

3.1 Getting started

In order to write tests that are discoverable by the plugin you need to complete the following steps.

• Create a tests directory in the root of your repository.

• Create your test yaml files in the tests directory. The files need to start with test and have a .yml or
.yaml extension.

Below is an example of a YAML file that defines a test:

- name: Touch a file
command: touch test.file
files:
- path: test.file

This will run touch test.file and check afterwards if a file with path: test.file is present. It will also
check if the command has exited with exit code 0, which is the only default test that is run. Testing workflows that
exit with another exit code is also possible.

3.2 Test options

- name: moo file # The name of the workflow (required)
command: bash moo_workflow.sh # The command to execute the workflow (required)
files: # A list of files to check (optional)
- path: "moo.txt" # File path. (Required for each file)
contains: # A list of strings that should be in the file

→˓(optional)
- "moo"

must_not_contain: # A list of strings that should NOT be in the
→˓file (optional)

(continues on next page)

7

pytest-workflow Documentation, Release 2.0.1

(continued from previous page)

- "Cock a doodle doo"
md5sum: e583af1f8b00b53cda87ae9ead880224 # Md5sum of the file (optional)
encoding: UTF-8 # Encoding for the text file (optional).

→˓Defaults to system locale.

- name: simple echo # A second workflow. Notice the starting `-`
→˓which means
command: "echo moo" # that workflow items are in a list. You can add

→˓as much workflows as you want
files:
- path: "moo.txt"

should_exist: false # Whether a file should be there or not.
→˓(optional, if not given defaults to true)
stdout: # Options for testing stdout (optional)
contains: # List of strings which should be in stdout

→˓(optional)
- "moo"

must_not_contain: # List of strings that should NOT be in stout
→˓(optional)

- "Cock a doodle doo"
encoding: ASCII # Encoding for stdout (optional). Defaults to

→˓system locale.

- name: mission impossible # Also failing workflows can be tested
tags: # A list of tags that can be used to select

→˓which test
- should fail # is run with pytest using the `--tag` flag.

command: bash impossible.sh
exit_code: 2 # What the exit code should be (optional, if not

→˓given defaults to 0)
files:
- path: "fail.log" # Multiple files can be tested for each workflow
- path: "TomCruise.txt.gz" # Gzipped files can also be searched, provided

→˓their extension is '.gz'
contains:
- "starring"

stderr: # Options for testing stderr (optional)
contains: # A list of strings which should be in stderr

→˓(optional)
- "BSOD error, please contact the IT crowd"

must_not_contain: # A list of strings which should NOT be in
→˓stderr (optional)

- "Mission accomplished!"
encoding: UTF-16 # Encoding for stderr (optional). Defaults to

→˓system locale.

- name: regex tests
command: echo Hello, world
stdout:
contains_regex: # A list of regex patterns that should be in

→˓stdout (optional)
- 'Hello.*' # Note the single quotes, these are required for

→˓complex regexes
- 'Hello .*' # This will fail, since there is a comma after

→˓Hello, not a space

must_not_contain_regex: # A list of regex patterns that should not be in
→˓stdout (optional) (continues on next page)

8 Chapter 3. Writing tests with pytest-workflow

pytest-workflow Documentation, Release 2.0.1

(continued from previous page)

- '^He.*' # This will fail, since the regex matches Hello,
→˓world

- '^Hello .*' # Complex regexes will break yaml if double
→˓quotes are used

The above YAML file contains all the possible options for a workflow test.

Please see the Python documentation on regular expressions to see how Python handles escape sequences.

Note: Workflow names must be unique. Pytest workflow will crash when multiple workflows have the same name,
even if they are in different files.

3.3 Environment variables

Pytest-workflow runs tests in the same environment as in which the pytest executable was started. This means programs
started in tests can use environnment variables. However, environment variables inside the command section itself are
quoted by pytest-workflow using shlex.quote. See the examples below:

- name: Try to use an environment variable
command: echo $MY_VAR
Output will be literally "$MY_VAR"

- name: Circumenvent shlex quoting by explicitly starting the command in a shell.
command: bash -c 'echo $MY_VAR'
Output will be the content of $MY_VAR

- name: Use a program that checks an environment variable
command: singularity run my_container.sif
Correctly uses "SINGULARITY_" prefixed variables

If you want to use shell scripting features such as environment variables inside command, you need to explicitly set
the shell as shown above.

3.4 Writing custom tests

Pytest-workflow provides a way to run custom tests on files produced by a workflow.

import pathlib
import pytest

@pytest.mark.workflow('files containing numbers')
def test_div_by_three(workflow_dir):

number_file = pathlib.Path(workflow_dir, "123.txt")
number_file_content = number_file.read_text()
assert int(number_file_content) % 3 == 0

The @pytest.mark.workflow('files containing numbers') marks the test as belonging to a work-
flow named files containing numbers. This test will only run if the workflow ‘files containing numbers’
has run.

Multiple workflows can use the same custom test like this:

3.3. Environment variables 9

https://docs.python.org/3/library/re.html
https://docs.python.org/3/library/shlex.html#shlex.quote

pytest-workflow Documentation, Release 2.0.1

import pathlib
import pytest

@pytest.mark.workflow('my_workflow', 'another_workflow',
'yet_another_workflow')

def test_ensure_long_logs_are_written(workflow_dir):
log = pathlib.Path(workflow_dir, "log.out")
assert len(log.readtext()) > 10000

workflow_dir is a fixture. It does not work without a pytest.mark.workflow('workflow_name')
mark. This is a pathlib.Path object that points to the folder where the named workflow was executed. This allows
writing of advanced python tests for each file produced by the workflow.

Note: stdout and stderr are available as files in the root of the workflow_dir as log.out and log.err respec-
tively.

10 Chapter 3. Writing tests with pytest-workflow

https://docs.python.org/3/library/pathlib.html

CHAPTER 4

Running pytest-workflow

4.1 Usage

Run pytest from an environment with pytest-workflow installed or python3 -m pytest if using a system-wide
or user-wide installation. Pytest will automatically gather files in the tests directory starting with test and ending
in .yaml or .yml.

The workflows are run automatically. Each workflow gets its own temporary directory to run. The stdout and
stderr of the workflow command are also saved to this directory to log.out and log.err respectively.

To check the progress of a workflow while it is running you can use tail -f on the stdout or stderr file of the
workflow. The locations of these files are reported in the log as soon as a workflow is started.

4.2 Specific pytest options for pytest workflow

usage: pytest [-h] [--kwd] [--kwdof] [--wt WORKFLOW_THREADS] [--symlink]
[--ga] [--sb STDERR_BYTES] [--tag WORKFLOW_TAGS]

4.2.1 Named Arguments

--kwd, --keep-workflow-wd Keep temporary directories where workflows are run for debugging pur-
poses. This also triggers saving of stdout and stderr in the workflow directory.

Default: False

--kwdof, --keep-workflow-wd-on-fail Similar to –keep-workflow-wd, but only keeps the temporary
directories if there are test failures. On success all directories are deleted.

Default: False

--wt, --workflow-threads The number of workflows to run simultaneously.

Default: 1

11

pytest-workflow Documentation, Release 2.0.1

--symlink Instead of copying the current working directory, create a similar directory struc-
ture where all files are replaced with symbolic links. This saves disk space, but
should only be used for tests that do use these files read-only.

Default: False

--ga, --git-aware Only copy files that are listed by the ‘git ls-files’ command. This ignores the .git
directory, any untracked files and any files listed by .gitignore. Highly recom-
mended when working in a git project.

Default: False

--sb, --stderr-bytes The number of bytes to display from the stderr and stdout on exitcode.

Default: 1000

--tag Run workflows with this name or tag.

Default: []

4.3 Setting specific per-project settings using pytest.ini

pytest can be configured using a pytest.ini file. This mechanic can be used to set specific settings in each repository
where pytest workflow is used.

For example a pytest.ini with the following contents:

[pytest]
addopts = --git-aware

Can be used in a git repository with a workflow.

4.4 Temporary directory cleanup and creation

The temporary directories are cleaned up after the tests are completed. If you wish to inspect the output of a failing
workflow you can use the --keep-workflow-wd or --kwd flag to disable cleanup. This will also make sure
the logs of the pipeline are not deleted. If you only want to keep directories when one or more tests fail you can
use the --keep-workflow-wd-on-fail or --kwdof flag. --keep-workflow-wd-on-fail will keep
all temporary directories, even from workflows that have succeeded.

If you wish to change the temporary directory in which the workflows are run use --basetemp <dir> to change
pytest’s base temp directory.

Warning: When a directory is passed to --basetemp some of the directory contents will be deleted. For
example: if your workflow is named "my workflow" then any file or directory named my_workflow will be
deleted. This makes sure you start with a clean slate if you run pytest again with the same basetemp directory.
DO NOT use --basetemp on directories where none of the contents should be deleted.

The temporary directories created are copies of pytest’s root directory, the directory from which it runs the tests. If
you have lots of tests, and if you have a large repository, this may take a lot of disk space. To alleviate this you can
use the --symlink flag which will create the same directory layout but instead symlinks the files instead of copying
them. This carries with it the risk that the tests may alter files from your work directory. If there are a lot of large files
and files are used read-only in tests, then it will use a lot less disk space and be faster as well.

12 Chapter 4. Running pytest-workflow

https://docs.pytest.org/en/7.1.x/reference/customize.html#pytest-ini

pytest-workflow Documentation, Release 2.0.1

Note: When your workflow is version controlled in git please use the --git-aware option. This omits the .git
folder, all untracked files and everything ignored by .gitignore. This reduces the number of copy operations
significantly.

4.5 Running multiple workflows simultaneously

To run multiple workflows simultaneously you can use --workflow-threads <int> or --wt <int> flag.
This defines the number of workflows that can be run simultaneously. This will speed up things if you have enough
resources to process these workflows simultaneously.

4.6 Running specific workflows

To run a specific workflow use the --tag flag. Each workflow is tagged with its own name and additional tags in the
tags key of the yaml.

- name: moo
tags:
- animal

command: echo moo
- name: cock-a-doodle-doo

tags:
- rooster sound
- animal

command: echo cock-a-doodle-doo
- name: vroom vroom

tags:
- car

command: echo vroom vroom

With the command pytest --tag moo only the workflow named ‘moo’ will be run. With pytest --tag
'rooster sound' only the ‘cock-a-doodle-doo’ workflow will run. Multiple tags can be used like this: pytest
--tag 'rooster sound' --tag animal This will run all workflows that have both ‘rooster sound’ and
‘animal’.

Internally names and tags are handled the same so if the following tests:

- name: hello
command: echo 'hello'

- name: hello2
command: echo 'hello2'
tags:
- hello

are run with pytest --tag hello then both hello and hello2 are run.

Note: The pytest flags -k and -m are not supported by pytest-workflow. Rational for this design decision can be
found within GitHub issue #155.

4.5. Running multiple workflows simultaneously 13

https://github.com/LUMC/pytest-workflow/issues/155#issuecomment-1334911457

pytest-workflow Documentation, Release 2.0.1

14 Chapter 4. Running pytest-workflow

CHAPTER 5

Examples

5.1 Snakemake example

An example yaml file that could be used to test a snakemake pipeline is listed below.

- name: test-dry-run
command: snakemake -n -r -p -s Snakefile

- name: test-full-run
command: snakemake -r -p -s Snakefile
files:
- "my_output.txt"

stderr:
contains:
- "(100%) done"

5.2 WDL with Cromwell example

Below an example yaml file is explained which can be used to test a WDL pipeline run through Cromwell.

By default Cromwell outputs its files in the execution folder in a deeply-nested folder structure. Cromwell can output
to a separate workflow-outputs folder and since Cromwell version 40 it can also output the files in a structure that is
not nested. For more information check the Cromwell documentation on global workflow options.

In order to run Cromwell for CI tests an options file should be present in the repository with the following contents:

{
"final_workflow_outputs_dir": "test-output",
"use_relative_output_paths": true,
"default_runtime_attributes": {
"docker_user": "$EUID"
}

}

15

https://cromwell.readthedocs.io/en/stable/wf_options/Overview/#global-workflow-options

pytest-workflow Documentation, Release 2.0.1

final_workflow_outputs_dir will make sure all the files produced in the workflow will be copied to the
final_workflow_outputs_dir. use_relative_output_paths will get rid of all the Cromwell specific
folders such as call-myTask etc. The default_runtime_attributes are only necessary when using docker
containers. It will make sure all the files are created by the same user that runs the test (docker containers run as root
by default). This will ensure that files can be deleted by pytest-workflow afterwards.

The following yaml file tests a WDL pipeline run with Cromwell. In this case Cromwell is installed via conda. The
conda installation adds a wrapper to Cromwell so it can be used as a command, instead of having to use the jar.

- name: My pipeline
command: cromwell run -i inputs.json -o options.json moo.wdl
files:
- path: test-output/moo.txt.gz

md5sum: 173fd8023240a8016033b33f42db14a2
stdout:
contains:

- "workflow finished with status 'Succeeded'"

5.3 WDL with miniwdl example

For miniwdl please consult the runner reference for more information on the localization of output files as well as
options to modify the running of miniwdl from the environment.

Miniwdl will localize all the output files to an output_links directory inside the test output directory. If you have
a workflow with the output:

output {
File moo_file = moo_task.out
Array[File] stats = moo_task.stats_files

}

Inside the out directory the directories moo_file and stats will be created. Inside these directories will be the
produced files.

The following yaml file tests a WDL pipeline run with miniwdl.

- name: My pipeline
command: miniwdl run -i inputs.json -d test-output/ moo.wdl
files:
- path: test-output/output_links/moo_file/moo.txt.gz

md5sum: 173fd8023240a8016033b33f42db14a2
- path: test-output/output_links/stats/number_of_moos_per_cow.tsv

contains:
- 42

- path: test-output/output_links/stats/joy_invoking_moos.tsv
must_not_contain:

- 0

Please note that the trailing slash in -d test-output/ is important. It will ensure the files end up in the
test-output directory.

16 Chapter 5. Examples

https://miniwdl.readthedocs.io/en/stable/runner_reference.html

pytest-workflow Documentation, Release 2.0.1

5.4 Nextflow example

With nextflow each process is run in a unique directory where the output files will also be stored. Nextflow can output
a copy of the output files to a separate workflow-outputs directory. This can be achieved by defining a publishDir
in the process. Through params.outdir it is possible to define the output directory when running the code.

An example code defining a publishDir is listed below.

process Hello {
publishDir = [

path: { "${params.outdir}/hello"}
]

output:
path "HelloWorld.txt"
script:
"""
echo "Hello World!" > HelloWorld.txt
"""

}

workflow {
Hello

}

To run the code listed above the following command can be used in which examplecode.nf is the code listed
above:

nextflow run examplecode.nf --outdir test-output

publishDir will make it so that all the output files of the process are copied to the given directory. --outdir
is used to define the path the output files will go to. In this case HelloWorld.txt will be copied to the directory
called test-output/hello.

An example yaml file that could be used to test the nextflow pipeline from examplecode.nf is listed below.

- name: My pipeline
command: nextflow run examplecode.nf --outdir test-output
files:
- path: "test-output/hello/HelloWorld.txt"

5.5 Bash example

The following is an example of a Bash file that can run directly as a script, or sourced to test each function separately:

#!/usr/bin/env bash

function say_hello() {
local name="$1"
echo "Hello, ${name}!"

}

function main() {
say_hello world

}

(continues on next page)

5.4. Nextflow example 17

pytest-workflow Documentation, Release 2.0.1

(continued from previous page)

Only execute main when this file is run as a script
if [["${BASH_SOURCE[0]}" == "${0}"]]; then

main
fi

Save the bash file as script.sh, and test it with the following pytest-workflow configuration:

- name: test bash script
command: bash script.sh
stdout:
contains:

- "Hello, world!"

- name: test bash function
command: >
bash -c "
source script.sh;
say_hello pytest-workflow
"

stdout:
contains:

- "Hello, pytest-workflow!"
must_not_contain:

- "Hello, world!"

18 Chapter 5. Examples

CHAPTER 6

Known issues

• pytest-workflow does not work well together with pytest-cov. This is due to the temporary directory
creating nature of pytest-workflow. This can be solved by using:

coverage run --source=<your_source_here> -m py.test <your_test_dir>

This will work as expected.

• contains_regex and must_not_contain_regex only work well with single quotes in the yaml file.
This is due to the way the yaml file is parsed: with double quotes, special characters (like \t) will be expanded,
which can lead to crashes.

• Special care should be taken when using the backslash character (\) in contains_regex and
must_not_contain_regex, since this collides with Python’s usage of the same character to escape special
characters in strings. Please see the Python documentation on regular expressions for details.

19

https://docs.python.org/3/library/re.html

pytest-workflow Documentation, Release 2.0.1

20 Chapter 6. Known issues

CHAPTER 7

Reporting bugs and feature requests

Bugs can be reported and features can be requested on our Github issue tracker.

The aim of this project is to be as user-friendly as possible for writing workflow tests, so all suggestions and bug
reports are welcome!

21

https://github.com/LUMC/pytest-workflow/issues/

pytest-workflow Documentation, Release 2.0.1

22 Chapter 7. Reporting bugs and feature requests

CHAPTER 8

Contributing

If you feel like this project is missing a certain something, feel free to make a pull request. You can find our Github
page here.

23

https://github.com/lumc/pytest-workflow/
https://github.com/lumc/pytest-workflow/

pytest-workflow Documentation, Release 2.0.1

24 Chapter 8. Contributing

CHAPTER 9

Changelog

9.1 version 2.0.1

• Fixed a bug where pytest-workflow would crash on logs that used non-ASCII characters where the chunk of size
--stderr-bytes did not properly align with the used encoding.

9.2 version 2.0.0

This major release greatly cleans up the output of pytest-workflow in case of an error as well as providing the stderr and
stdout last bytes for debugging purposes. When the exit code test fails all other tests from the workflow are skipped.

• Python 3.6 is no longer supported. It has been removed from github actions, as such we can no longer guarantee
that pytest-workflow works properly with python 3.6.

• Fix an issue where symlinks in git repositories could not be properly copied.

• Added an optional encoding key for files, stdout and stderr so the file can be opened with the proper encoding.

• Make content tests more efficient by reading each file only once instead of twice when there are both strings and
regexes to check for.

• When the --git-aware flag is used a submodule check is performed in order to assert that all submodules
are properly checked out. This prevents unclear copying errors.

• Tests are now skipped if the workflow does not exit with the desired exit code, except for the exit code tests, to
reduce visual clutter when reporting failing tests.

• Tests for checking file content are now skipped when the file does not exist in order to reduce visual clutter when
reporting failing tests.

• Test and support for Python 3.11.

• Add --stderr-bytes or --sb option to change the maximum number of bytes to display for the stderr and
stdout on command failure.

• Add stderr and stdout to be displayed on command failure

25

pytest-workflow Documentation, Release 2.0.1

• Document using pytest.ini as a way of setting specific per repository settings for pytest-workflow.

• Add tests for nextflow.

• Document the use of environment variables with pytest-workflow.

• A minimum of pytest 7.0.0 is now a requirement for pytest-workflow. This fixes the deprecation warnings that
started on the release of pytest 7.0.0.

• Throw a more descriptive error when a file copied with the –git-aware flag is not present on the filesystem
anymore.

• Document pytest flags -k and -m are not supported.

9.3 version 1.6.0

• Add a --git-aware or --ga option to only copy copy files listed by git ls-files. This omits the .git folder,
all untracked files and everything ignored by .gitignore. This reduces the number of copy operations
drastically.

Pytest-workflow will now emit a warning when copying of a git directory is detected without the
--git-aware option.

• Add support and tests for Python 3.10

9.4 version 1.5.0

• Add support for python 3.9

• Update the print statement for starting jobs to be more structured. This will make the output easier to to read
and use, since different fields (stdout, stderr, command, etc) are all on their own line.

• Do not crash when directories can not be removed due to permission errors. Instead display a message to notify
the users which directories could not be removed. These issues occurred sometimes when tests involving docker
were run.

9.5 version 1.4.0

• Usage of the name keyword argument in workflow marks is now deprecated. Using this will crash the plugin
with a DeprecationWarning.

• Update minimum python requirement in the documentation.

• Removed redundant check in string checking code.

• Add new options contains_regex and must_not_contain_regex to check for regexes in files and
stdout/stderr.

9.6 version 1.3.0

Python 3.6 and pytest 5.4.0.0 are now minimum requirements for pytest-workflow. This was necessary for fixing the
deprecation warning issue and the issue with the subdirectory evaluation. This also gave the opportunity to simplify
the source code using new python 3.6 syntax.

26 Chapter 9. Changelog

pytest-workflow Documentation, Release 2.0.1

• Using the name keyword argument in workflow marks will be deprecated from 1.4.0 onwards. A warning
will be given if this is used. For example: pytest.mark.workflow(name="my_workflow"). Use the
name as argument instead: pytest.mark.workflow("my_workflow").

• Allow running custom tests on multiple workflows. You can now use pytest.mark.
workflow("worflow name 1", "workflow name 2", ...). (Issue #75)

• Add a miniwdl example to the documentation.

• Added a --symlink flag to the CLI that changes the copying behavior. Instead of copying, it creates a similar
directory structure where all files are linked to with symbolic links. (Issue #96)

• Refactored the code base. Python 3.6’s f-strings and type annotation were used consistently throughout the
project. Some code was rewritten to be more concise and readable.

• Improved speed for searching string content in files. This was achieved by removing intermediate functions and
simplifying the search function.

• Improved speed for calculating md5sums by increasing the read buffer size from 8k to 64k.

• Solve issue where pytest would display a lot of deprecation warnings when running pytest-workflow. (Issue
#98)

• Fix issues with later versions of Cromwell and Snakemake in CI testing.

• Add correct subdirectory evaluation to fix issue where /parent-dir/child was evaluated as a subdirectory
of /parent due to starting with the same string. (Issue #95)

• Fix error in cromwell example which did not allow it to remove folders correctly.

9.7 version 1.2.3

• Added missing help section for --tag on the CLI.

• Documentation: added usage chapter for pytest-workflow specific options.

• Documentation: updated Cromwell example.

• Removed redundant references to pylint in code comments and CI.

• Remove Codacy from the CI.

9.8 version 1.2.2

• Test against python3.8

• Do not test on python3.5 snakemake as it crashes. Added test for python3.7 snakemake.

• Fix a typo in the documentation.

• Add tags ‘wdl’, ‘cromwell’ and ‘snakemake’ to the package to increase discoverability.

• Remove pylint from the lint procedure as it was very strict and got stricter with every update, causing tests that
previously succeeded to fail on a regular basis.

• Make sure pytest-workflow crashes when multiple workflows have the same name, even when they are in dif-
ferent files.

• Added setup.cfg to include license in source distributions on PyPI for future versions

9.7. version 1.2.3 27

https://github.com/LUMC/pytest-workflow/issues/75
https://github.com/LUMC/pytest-workflow/issues/98
https://github.com/LUMC/pytest-workflow/issues/98
https://github.com/LUMC/pytest-workflow/issues/98
https://github.com/LUMC/pytest-workflow/issues/95

pytest-workflow Documentation, Release 2.0.1

9.9 version 1.2.1

• Since pytest 4.5.0 unknown markers give a warning. @pytest.mark.workflow markers are now added to
the configuration. Information on usage shows up with pytest --mark.

• Updated documentation to reflect the move to conda-forge as requested on this github issue.

• Updated documentation on how to test Cromwell + WDL pipelines.

9.10 version 1.2.0

• Giving a --basetemp directory that is within pytest’s current working directory will now raise an exception
to prevent infinite recursive directory copying.

• The cleanup message is only displayed when pytest-workflow is used.

• Added a --keep-workflow-wd-on-fail or --kwdof flag. Setting this flag will make sure temporary
directories are only deleted when all tests succeed.

9.11 version 1.1.2

• Fixed a bug where the program would hang indefinitely after a user input error.

9.12 version 1.1.1

• Added --kwd as alias for --keep-workflow-wd. Notify the user of deletion of temporary directories and
logs.

• Released pytest-workflow as a conda package on bioconda.

9.13 version 1.1.0

• Enabled custom tests on workflow files.

9.14 Version 1.0.0

Lots of small fixes that improve the usability of pytest-workflow are included in version 1.0.0.

• Gzipped files can now also be checked for contents. Files with ‘.gz’ as extension are automatically decom-
pressed.

• stdout and stderr of workflows are now streamed to a file instead of being kept in memory. This means
you can check the progress of a workflow by running tail -f <stdout or stderr>. The location of
stdout and stderr is now reported at the start of each worflow. If the --keep-workflow-wd is not set
the stdout and stderr files will be deleted with the rest of the workflow files.

• The log reports now when a workflow is starting, instead of when it is added to the queue. This makes it easier
to see which workflows are currently running and if you forgot to use the --workflow-threads or --wt
flag.

28 Chapter 9. Changelog

https://github.com/bioconda/bioconda-recipes/issues/13964
https://bioconda.github.io/recipes/pytest-workflow/README.html

pytest-workflow Documentation, Release 2.0.1

• Workflow exit code failures now mention the name of the workflow. Previously the generic name “Workflow”
was used, which made it harder to figure out which workflows failed.

• When tests of file content fail because the file does not exist, a different error message is given compared
to when the file exist, but the content is not there, which makes debugging easier. Also the accompanying
“FileNotFound” error stacktrace is now suppressed, which keeps the test output more pleasant.

• When tests of stdout/stderr content or file content fail a more informative error message is given to allow for
easier debugging.

• All workflows now get their own folder within the same temporary directory. This fixes a bug where if
basetemp was not set, each workflow would get its own folder in a separate temp directory. For example
running workflows ‘workflow1’ and ‘workflow2’ would create two temporary folders:

‘/tmp/pytest_workflow_33mrz5a5/workflow1’ and ‘/tmp/pytest_workflow_b8m1wzuf/workflow2’

This is now changed to have all workflows in one temporary directory per pytest run:

‘/tmp/pytest_workflow_33mrz5a5/workflow1’ and ‘/tmp/pytest_workflow_33mrz5a5/workflow2’

• Disallow empty command and name keys. An empty command caused pytest-workflow to hang. Empty
names are also disallowed.

9.15 Version 0.4.0

• Added more information to the manual on how to debug pipelines and use pytest-workflow outside a
virtual environment.

• Reworked code to use tempfile.mkdtemp to create a truly unique temporary working directory if the
--basetemp flag is not used. This replaces the old code which dependeded on pytest internal code which
was flagged as deprecated. Also more information was added to the manual about the use of --basetemp.

• Added a test case for WDL pipelines run with Cromwell and wrote an example for using WDL+Cromwell in
the manual.

• Added --tag flag to allow for easier selection of workflows during testing.

• Added a test case for snakemake pipelines and wrote an example for using pytest-workflow with snakemake in
the manual.

9.16 Version 0.3.0

• Improved the log output to look nicer and make workflow log paths easier to find in the test output.

• Fixed an error that polluted the log message with a pytest stacktrace when running more than one workflow.
Measures are taken in our test framework to detect such issues in the future.

• Added the possibility to run multiple workflows simultaneously with the --workflow-threads or --wt
flag.

• Made code easier to maintain by using stdlib instead of pytest’s py lib in all of the code.

• Added a schema check to ensure that tests have unique names when whitespace is removed.

9.15. Version 0.4.0 29

pytest-workflow Documentation, Release 2.0.1

9.17 Version 0.2.0

• Cleanup the readme and move advanced usage documentation to our readthedocs page.

• Start using sphinx and readthedocs.org for creating project documentation.

• The temporary directories in which workflows are run are automatically cleaned up at the end of each workflow
test. You can disable this behaviour by using the --keep-workflow-wd flag, which allows you to inspect
the working directory after the workflow tests have run. This is useful for debugging workflows.

• The temporary directories in which workflows are run can now be changed by using the --basetemp flag.
This is because pytest-workflow now uses the built-in tmpdir capabilities of pytest.

• Save stdout and stderr of each workflow to a file and report their locations to stdout when running pytest.

• Comprehensible failure messages were added to make debugging workflows easier.

9.18 Version 0.1.0

• A full set of examples is now provided in the README.

• Our code base is now checked by pylint and bandit as part of our test procedure to ensure that our code adheres
to python and security best practices.

• Add functionality to test whether certain strings exist in files, stdout and stderr.

• Enable easy to understand output when using pytest verbose mode (pytest -v). The required code refactor-
ing has simplified the code base and made it easier to maintain.

• Enable the checking of non-existing files

• Enable the checking of file md5sums

• Use a schema structure that is easy to use and understand.

• Pytest-workflow now has continuous integration and coverage reporting, so we can detect regressions quickly
and only publish well-tested versions.

• Fully parametrized tests enabled by changing code structure.

• Initialized pytest-workflow with option to test if files exist.

30 Chapter 9. Changelog

	Introduction
	Installation
	In a virtual environment
	On Ubuntu or Debian
	Conda

	Writing tests with pytest-workflow
	Getting started
	Test options
	Environment variables
	Writing custom tests

	Running pytest-workflow
	Usage
	Specific pytest options for pytest workflow
	Setting specific per-project settings using pytest.ini
	Temporary directory cleanup and creation
	Running multiple workflows simultaneously
	Running specific workflows

	Examples
	Snakemake example
	WDL with Cromwell example
	WDL with miniwdl example
	Nextflow example
	Bash example

	Known issues
	Reporting bugs and feature requests
	Contributing
	Changelog
	version 2.0.1
	version 2.0.0
	version 1.6.0
	version 1.5.0
	version 1.4.0
	version 1.3.0
	version 1.2.3
	version 1.2.2
	version 1.2.1
	version 1.2.0
	version 1.1.2
	version 1.1.1
	version 1.1.0
	Version 1.0.0
	Version 0.4.0
	Version 0.3.0
	Version 0.2.0
	Version 0.1.0

